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Abstract

We report numerical simulations and analytic modeling of shock tube experiments on 

Rayleigh-Taylor and Richtmyer-Meshkov instabilities. We examine single interfaces of the type 

A/B where the incident shock is initiated in A and the transmitted shock proceeds into B. 

Examples are He/air and air/He. In addition, we study finite-thickness or double-interface A/B/A 

configurations like air/SF6/air gas-curtain experiments. We first consider conventional shock 

tubes that have a “fixed” boundary: A solid endwall which reflects the transmitted shock and 

reshocks the interface(s). Then we focus on new experiments with a “free” boundary—a 

membrane disrupted mechanically or by the transmitted shock, sending back a rarefaction 

towards the interface(s). Complex acceleration histories are achieved, relevant for Inertial 

Confinement Fusion implosions. We compare our simulation results with a generalized Layzer 

model for two fluids with time-dependent densities, and derive a new freeze-out condition 

whereby accelerating and compressive forces cancel each other out. Except for the recently 

reported failures of the Layzer model, the generalized Layzer model and hydrocode simulations 

for reshocks and rarefactions agree well with each other, and remain to be verified 

experimentally.
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I. Introduction and Motivation

Hydrodynamic instabilities play a major role in natural phenomena such as supernova 

explosions1 and in man-made devices such as Inertial Confinement Fusion (ICF) capsules2. In 

particular, the Rayleigh-Taylor3 (RT) and Richtmyer-Meshkov4 (RM) instabilities, associated 

with accelerating and shocked interfaces respectively, lead to the eventual turbulent mixing of 

the fluids. Perturbations at the interface of amplitude η and wavelength λ start in the linear 

regime ( kη <<1, where λπ /2=k ), proceed to the nonlinear regime ( kη ~1-2), and finally enter 

a turbulent regime where multiple wavelengths emerge. All three regimes are presently under 

extensive study theoretically, numerically, and experimentally5.

Most of the studies on RT and RM instabilities have naturally focused on single 

interfaces undergoing a constant acceleration or a shock to bring out the essential or “classical” 

behavior of these instabilities. Multiple interfaces leading to multiple waves are present in the 

actual applications. In a supernova explosion a strong shock from the dense center moves out 

through successively less dense layers before emerging into the interstellar medium. At each 

crossing from a heavy to a lighter medium a rarefaction is generated moving back towards the 

center and rarefying the previously shocked interface. Similarly in ICF implosions: A strong 

shock moves inwards through successively lighter fluids generating rarefactions. For double-

shell capsules6, the shock strikes a heavy shell which generates a reflected shock. In all cases the 

shock reaching the center reflects on itself and reshocks the imploding shell. Such 

implosions/explosions lead to a complex evolution of perturbations at multiple interfaces. The 

main purpose of this paper is to show that shock tubes, with minor modifications, can be used to 

study the effect of multiple waves and/or interfaces. Since perturbations evolve into the nonlinear 
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regime we believe the best way to demonstrate this capability, short of doing the experiments, is 

to present numerical simulations of realistic future experiments. We also present an analytic 

model for the nonlinear regime based on the pioneering work of Layzer7 and its recent 

extensions8,9,10,11. Since many of the proposed experiments involve fluids with changing 

densities, an extension of the standard Layzer model is called for. We develop such a 

Generalized Layzer model (GLM) and compare it with simulations.

Using a linear, incompressible theory, a first look into the effect of multiple shocks 

revealed12 a rich variety of possible outcomes—some 15 cases (see Fig. 3 in Ref. 12). A 

straightforward extension of Richtmyer’s model, often called the “impulsive model”, leads to12:

skAηηη v∆+= −+ && (1)

where +η& is the growth rate after the second shock, −η& is the growth rate before that second 

shock (and possibly induced by a first shock), v∆ is the jump in velocity induced by the second

shock, A is the Atwood number,

,
AB

ABA
ρρ
ρρ

+
−

= (2)

where BA,ρ are the densities of the two fluids, and sη is the amplitude of the perturbation at the 

time the second shock strikes the interface. Let us recall two special cases that can be inferred 

from Eq. (1). The first occurs when the first term on the right-hand-side of Eq. (1) is positive and 

the second term is negative (or vice versa): It is then possible for these two terms to cancel each 

other out leading to “freeze-out”, i.e., 0=+η& . The second case worth noting is that if 0=sη then 

−+ =ηη && (Fig. 3i in Ref. 12) meaning that the second shock has no effect on the growth rate. An 

example will be given later in this paper. As to freeze-out, a recent analysis13 shows that the idea 

of a second shock canceling the effect of the first shock is valid, provided that nonlinear 
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modifications to Eq. (1) are taken into account13. All these predictions remain 

theoretical/numerical and have no experimental verification.

Figure 1 shows a generic shock tube and some of our notation. The first shock, if there is 

one, moves “down” in a semi-infinite fluid A towards fluid B, often called the “test gas”, 

shocking the interface between the two fluids having perturbations of wavelength λ and initial 

amplitude 0η . A shock is transmitted into fluid B.

What happens to that transmitted shock depends on the second boundary of fluid B (the 

first boundary being the A/B interface). In all experiments and, we believe, all simulations 

performed to date that “bottom” boundary has been a solid wall, in which case the shock is 

reflected back up and reshocks the A/B interface. Another alternative that we consider in this 

paper is to have a membrane as the bottom boundary that disintegrates either mechanically or 

upon the arrival of that transmitted shock sending a rarefaction up towards the A/B interface14. 

Thus, depending on the nature of that bottom boundary, the second wave seen by the A/B 

interface may be a shock or a rarefaction.

With two waves, one can have shock/reshock, the case most commonly studied so far

with a solid endwall. Alternatively, replacing the end wall with a membrane we have 

shock/rarefaction or rarefaction/shock, the latter carried out by opening the bottom membrane 

first and allowing the rarefaction to reach the interface before the shock hits it. With a simple 

shock tube as in Fig. 1 it is clear that the second wave always moves in a direction opposite the 

first wave. A more complex shock tube having two consecutive firing chambers is needed to 

produce two co-propagating waves.

We limit ourselves to the following three systems: He/air, air/He, and air/SF6/air. The

first and last systems have already been studied for shock/reshock so we concentrate only on the 
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effect of a rarefaction. The air/He system (A = air, B = He) is relevant to both supernovae and 

ICF as representative of heavy-to-light shock propagation and, as we will find out, oscillatory 

behavior under rarefaction. We should note that air and He are used here as representatives: 

Heavy and light gases with similar density ratios are expected to behave the same way (air/SF6 is 

a good substitute, for example, for He/air). There are subtle compressibility effects invalidating 

Richtmyer’s impulsive model and his prescription for compressibility15 but none of them affect 

our results on high (~7) density contrasts and low (~1.2) Mach numbers.

In Section II we consider shock/reshock of the air/He system. In Section III we consider 

the effect of a rarefaction on all 3 systems. In Section IV we consider shock/rarefaction, and in 

Section V we simulate the more demanding rarefaction/shock experiments with emphasis on the 

timing between the rarefaction and the shock. Conclusions and future work are discussed in 

Section VI. The analytic GLM is presented in the Appendix; it is used in Sections III and IV to 

compare with numerical simulations, all carried out with the two-dimensional hydrocode 

CALE16.

II. Shock/Reshock

We have already presented17 calculations on shock and reshock of the air/SF6/air system, 

often called gas-curtain experiments18. So far only shocks have been produced experimentally, 

but preparations are in progress to capture the effect of reshocks.19

Similarly for the He/air system: our calculations are given in References 20 and 21 and 

compared with a Layzer-type analytic model. Therefore, we consider only the air/He system in 

this Section.
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Air/He

A Mach 1.2 shock proceeds from air (fluid A in Fig. 1) towards He (fluid B), striking the 

interface at =t 0. The shock tube is 26 cm wide with two sinusoidal perturbations of =λ 13 cm 

across the interface, as in earlier work20,21 on He/air. The main difference here is that the 

evolution of the perturbation starts with a phase reversal and grows thereafter. The length of the 

shock tube is again 122 cm; however, the transmitted shock travels faster in this case and, 

reflecting off the solid endwall, returns to reshock the interface at 2 ms (compared with 4.2 ms 

for the He/air case). Snapshots of the air/He interface starting with 7.00 =η cm are shown in Fig. 

2, to be compared with the He/air case (Fig. 5 of Ref. 20).

The bubble amplitude )(tη as calculated by CALE is shown in Fig. 3 for =0η 0.35 and 

0.7 cm, showing a phase reversal upon shock but none at reshock (the opposite happens for the 

He/air case). To compare with a Layzer-type model7 we write the solution found earlier (Eq. (10)

of Ref. 8) in the following manner:

)1ln(1)( 00 tk
k

t L
L

ηηη &++= (3)

where Lk is defined by

tk
t

L

1)( =≡∞→ ∞ηη && . (4)

Although Eq. (3) was derived for special values of 0η (there were no constraints on 0η& ), it is 

clearly self-consistent for arbitrary values of 0η , 0η& , and ∞η& . It will be seen as a special case of 

the GLM in the Appendix. Of course, the origin of time is also arbitrary and t can be replaced by 

0tt − as long as 0)( ηη =t and 0)( ηη && =t at 0tt = .
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We will apply Eq. (3) starting at == 0tt 0.2 ms when the amplitude goes through zero, 

i.e. start with 00 =η . A similar approach was taken recently22 when the amplitude undergoes a 

phase reversal. To calculate 0η& we use the impulsive model as modified by Meyer and Blewett23

or, more recently, by Vandenboomgaerde et al24. According to Meyer and Blewett23

kAafter v)(
2
1

000 ∆+= +− ηηη& (5a)

where )( 00 +− ηη is the amplitude before (after) shock arrival and Aafter is the Atwood number 

after shock arrival. According to Vandenboomgaerde et al24:

kAA afterbefore v)(
2
1

000 ∆+= +− ηηη& (5b)

with obvious notation. Equations (5a) and (5b) yield essentially the same result because

008.1757.0/763.0/ ≈=beforeafter AA . As noted by Richtmyer, −0η and +0η , the amplitudes before 

and after the shock, are related by

−+ ∆−= 00 )/v1( ηη iW (6)

where v∆ is the jump velocity of the interface, 14.9 cm/ms, and Wi is the incident shock speed, 

41.2 cm/ms. The factor )/v1( iW∆− is often referred to as the compression factor, and is about 

0.64 in the present case (air/He at Mach 1.2). Using 13/2π=k cm-1, we obtain =0η& 1.57 cm/ms 

and 3.15 cm/ms for =−0η 0.35 cm and 0.70 cm respectively.

The last variable needed in Eq. (3) is Lk , defined via the asymptotic bubble velocity ∞η&

in Eq. (4). For =A 1, 2/3kkL = (see Ref. 8). For arbitrary A , we compare Eq. (4) with the 

asymptotic bubble velocity given in Ref. 10 and find

.
3

)1(3
A

kAkL +
+

= (7)
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A more general expression covering arbitrary A and 2D or 3D geometry is given in the 

Appendix (Eq. A26a). Since 763.0== afterAA , we obtain ≈= kkL 4.1 0.68 cm-1 for =λ 13 cm.

The continuous lines in Fig. 3 show the results of using Eq. (3) with the above values of 

0η , 0η& , and Lk . As in the He/air case20 we see that the Layzer model is a good description of the 

bubble amplitude in the nonlinear regime.

The evolution of )(tη in Fig. 3 is consistent with the observation8 that the initial 

amplitude 0η affects only the initial growth rate 0η& and not the late-time bubble velocity tkL/1 .

III. Rarefaction

As far as we know, pure rarefaction experiments have not been considered previously 

although they are, we believe, easier to perform—no shock is involved (combination of shocks 

and rarefactions are treated in Sections IV and V). Referring to Fig. 1, we consider the case with 

no shock. Instead, the membrane at the bottom of that figure is removed at a certain (negative) 

time sending a rarefaction up to collide with the interface or gas-curtain. In analogy with the 

shock case, we take t = 0 as the collision time, after which the interface(s) move down and the 

perturbations evolve. For simplicity we assume that the lower membrane separates gas B at 

atmospheric pressure from vacuum, so that upon removal (at Bcdt /−= , Bc = sound speed of gas 

B and d =distance between the membrane and the interface) gas B exhausts into a vacuum 

channel.

From a theoretical point of view we find it more challenging to describe how 

perturbations evolve at interfaces subjected to a rarefaction, as opposed to a shock. There are two 

reasons: First, the interface does not move at a constant average velocity, as it does in a shock. 

Second, the fluids on either side of the interface continue to decompress with time, in contrast to 
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the shock case where the densities change instantaneously but remain at their new values after 

the passage of the shock. We will present direct numerical simulations of all three systems 

He/air, air/He, and air/SF6/air, and compare the numerical results with the Generalized Layzer 

Model.

A. He/air

The calculation is initiated with a “free” boundary condition at the lower edge of the 

problem (see Fig. 1) and the time is set to -3.5 ms ( d = 122 cm, airc = 34.8 cm/ms). Before we 

discuss the evolution of perturbations at the He/air interface we show in Fig. 4 the average or 

one-dimensional behavior of the interface acceleration and the densities Aρ and Bρ (A = He, B 

= air) near the interface as functions of time for t > 0. Note that )0(/)( AA t ρρ and )0(/)( BB t ρρ

have similar but not identical dependence on time because the adiabatic indices are different (we 

have used Heγ = 5/3 and airγ = 1.4). The acceleration is clearly not a delta-function of time as it 

would be for a shock.

Despite these differences the effect of a rarefaction moving up is, in very broad terms, 

similar to the effect of a shock moving down. In Fig. 5 we display the He/air interface with initial 

perturbations of =λ 13 cm and =0η 0.7 cm, in direct comparison with the shock case (Fig. 5 of 

Ref. 20): In both cases the perturbation grows with no phase change. The gross features are the 

same: mushrooming spikes and round bubbles. To compare the shock and the rarefaction cases, 

however, one must adapt a common metric and we propose this to be the average distance 

traveled by the interface. Thus we compare the interfaces after both have traveled say ~50 cm 

( t ~3.0 ms for a shock, ~3.4 ms for a rarefaction) and find that there is substantially more 

perturbation growth in the case of a rarefaction (by about a factor of 2), due in part to the fact 

that the gases decompress (by about a factor of 1.4) under rarefaction. As we will see below, the 
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time evolution of the bubble amplitude is quite different here: Whereas )(tη grows only 

logarithmically in the case of a shock (see Eq. (3) above or Fig. 6 in Ref. 20), it grows linearly 

for the case of a rarefaction. Before we display )(tη , however, we ask if there is an analytic 

model that can describe it. As far as we know such a model has not been developed previously, 

and for that purpose we present the GLM in the Appendix. The new elements are displayed in 

Fig. 4: )(tg and )(, tBAρ . For RT and RM instabilities, .)( consttg = and )(~)( ttg δ

respectively, while for rarefactions )(tg decays with time.

In addition to the time-dependence of )(tg , the new element is the time-dependence of 

the densities )(, tBAρ . The closest model was developed by Goncharov and Li11 for a single fluid 

with a time-dependent density. The GLM is a two-fluid Layzer model with arbitrary )(, tBAρ .

To calculate )(tη analytically one must solve the following two coupled nonlinear but 

ordinary differential equations:

( ) ( )ηρηηρ BB dt
d

c
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Eqs. (8) and (9) must be solved for the two unknowns )(tη and )(2 tη , all other quantities like 

),(tAρ ),(tBρ )(tg being “given” as input. The constant c is determined by the geometry of the 

flow: 2=c for planar perturbations, often called curtain-like or 2D, in which case λπ /2=k

with λ = wavelength of the perturbations, i.e., the interface at 0=t is given by )cos(0 kxη . For 

tubular flow, often called “pipe-flow” or 3D axisymmetric flow, 1=c and Rk n /β= where nβ

is a zero of 1J , the Bessel function of order one, R is the radius of the pipe, and the interface at

0=t is given by )(00 krJη . All our simulations are 2D hence we set 2=c and 13/2π=k cm–1.

We refer to Eqs. (8) and (9) as the GLM equations. As usual, we denote a time derivative 

by an overdot, hence 22 / dtd ηη ≡&& .  Eqs (8) and (9) are first order and second order respectively, 

and therefore we need three initial conditions: 0)0( ηη ≡ , )0(η& , and )0(2η . We take 0)0( =η& . 

As for 2η , it is related to the curvature of the interface (see the Appendix) and is the coefficient 

of the second-order term in a Taylor expansion of the interface near 0=x or 0=r . Expanding

)cos(kx or )(0 krJ , we get 4/)0( 0
2

2 ηη ck−= . Consequently, we have only one free parameter, 

the initial amplitude 0η . 

In Fig. 6, we display the CALE and the GLM results for the 7.00 =η cm case (snapshots 

in Fig. 5). We see good agreement, with GLM underestimating the amplitude by 7–8% at late 

times. Although the acceleration is not constant in time (see Fig. 4) the amplitude grows linearly 

with time in the late nonlinear regime reminiscent of RT growth. It is important to use the time-

dependent )(tg and )(, tBAρ to obtain such good agreement.
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In the linear regime ηk << 1 the GLM reduces to a single simple equation

0)()](1[)](1[ =−−+ ηρρηρ
ρ

ρηρ
ρ

ρ gk
dt
d

dt
d

dt
d

dt
d

ABA
A

AB
B

B (11)

with 4/)()( 2
2 tckt ηη −= . Eq. (11) reduces to Rayleigh’s equation, 0=− ηη gkA&& , for constant 

BA,ρ with the Atwood number A as defined in Eq. (2).

As a check, we simulated the same He/air rarefaction system with 05.00 =η cm. In Fig. 

7, we compare the three results: CALE, GLM, and linear. Clearly, the linear approximation, 

Eq. (11), greatly overestimates the perturbation once it enters the nonlinear regime, 1>η cm. 

CALE and the GLM show good agreement in the nonlinear regime and agree with the linear 

result for small η .

B. Air/He

We now interchange the gases air ↔ He and let the rarefaction move up through the He 

and reach the air/He interface. This takes about 1.2 ms since Hec =101 cm/ms. The interface 

acceleration and the densities are shown in Fig. 8. Compared with Fig. 4, the acceleration of the 

interface and the decompression of the gases are larger here, approximately by a factor of ~3.

The critical difference, however, is that it is now a heavier gas (air) accelerating a lighter 

gas (He). This is well known to be a stable configuration, and indeed the perturbations are found 

to oscillate with time and amplify in response to the decompression of the gases. Snapshots of

the air/He interface for λ =13 cm and 7.00 =η cm are shown in Fig. 9, to be compared with the 

He/air case of Fig. 5. The amplitude goes thru zero at ~0.6 ms and also at t ≈ 2 ms. The bubble 

amplitude calculated by CALE (dashed curve) is shown in Fig. 10 as a function of time.

In the same figure, we show )(tη calculated by the GLM, Eqs. (8–9). It fails miserably. 

This is the first portrayal, we believe, of the failure of Layzer’s model on such a massive scale: It 
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predicts uniform growth after a phase change, instead of amplified oscillations. Needless to say, 

this assertion is based on the tacit assumption that CALE calculations are correct—we hope other 

calculations and eventual experiments will confirm this claim.

The reader might surmise that the original Layzer model with constant densities also fails 

for the stable case, i.e., <gA 0, and indeed this is true, as reported recently25. We emphasize that 

this failure occurs for the nonlinear model only - the linear model, Eq. (11), is valid for any

)(tg . Since the nonlinear model does reduce to the linear model for small η , we expect and find 

good agreement for very small 0η .  To illustrate, in Fig. 11 we compare the linear and nonlinear 

results and a CALE calculation with 05.00 =η cm. All three indicate oscillations with time, as 

expected. Unlike the He/air case (Fig. 7) where the linear theory greatly overestimated η(t), here 

the linear theory is as good if not a better match to the CALE results than the nonlinear GLM, 

though the differences are small at such small amplitudes.

We have no alternative nonlinear theory to offer at this time. As discussed in the 

Appendix and Ref. 25, the failure is not associated with having time-dependent accelerations or 

densities and occurs with the “classical” Layzer model, meaning constant densities and 

accelerations. For stable situations, therefore, we recommend using the linear theory, Eq. (11), 

simply because it is “less wrong” than the GLM. For example, using Eq. (11) for the case shown 

in Fig. 10 with 7.00 =η cm, we would have had errors of “only” ~30% instead of the completely 

erroneous GLM result. In Fig. 12, we compare CALE, GLM, and linear theory for 35.00 =η cm. 

Although one may balk at using linear theory when k0η ≈ 0.17, it is clearly a much better match

to CALE than the nonlinear GLM.
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One might argue that when η changes sign spikebubble ηη → for which a different set of 

equations must be used.10 From Figs. 10 and 12 (and Fig. 19 below) we note that the model fails 

before )(tη crosses zero. In addition, we have found25 that that model for spikes is deficient even 

for the more standard applications of the Layzer model (constant densities and accelerations) 

and, at present, can offer no remedy other than the linear result for stable accelerations.

The above failure of the GLM is distinct and separate from another failure that occurs 

even for unstable accelerations where Layzer’s model has been traditionally applied. That 

failure, associated with large 0η , is discussed in Ref. 25 and in the Appendix also.

C. Gas-curtain: air/SF6/air

In these experiments18 a perturbed SF6 gas layer sandwiched between air on both sides is 

subjected to a Mach 1.2 shock. Here we replace that shock by a rarefaction.

Our CALE simulations17 showed good agreement with the single-shock experiments18

and made predictions, yet to be verified, about the effect of a reshock coming from a solid 

endwall 15 cm away. For brevity we shall consider the same system here, and refer to Ref. 17 as 

to how the perturbations in the gas-curtain are set up, etc. The only change is replacing the solid 

endwall by a membrane that is burst at t = – 0.43 ms. A rarefaction moves “up” through the air 

and reaches the SF6 layer at t = 0. The subsequent evolution is shown in Fig. 13.

The ubiquitous bubble-and-spike structure, which appears here as well as in the shock 

case, is stretched along the direction of the flow because of the decompression of the SF6 curtain. 

The shock experiments have been used by various researchers as a vehicle for hydrocode 

validation,26 and we believe future rarefaction experiments will provide equally, if not more, 

challenging data as displayed in Fig. 13, to be compared with the shock case (Fig. 10 in Ref. 17). 
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As to analytic modeling, the GLM must be considerably expanded to include finite-thickness and 

spatial density gradient effects before it can be applied to gas-curtain experiments, be they shock 

or rarefaction driven. Linear theory with sharp interfaces gives qualitative agreement27 with the

experiments (sinuous, upstream mushrooms, and downstream mushrooms18), but only full 

hydrocode simulations can capture the detailed shapes and density fields that arise when a 

perturbed gas-curtain is shocked or rarefied.

IV. Shock/Rarefaction

We have studied how each of the three systems (He/air, air/He, air/SF6/air) respond to a 

single shock, a single rarefaction, or a shock followed by reshock, the reshock coming naturally 

from the solid endwall of the tube (Fig. 1) situated 122 cm away in the He/air and air/He cases, 

and 15 cm away in the gas-curtain case. Clearly, there are two more double-wave combinations 

that these systems can be subjected to, both involving the replacement of the solid endwall by a 

membrane: shock/rarefaction and rarefaction/shock. The first combination is studied in this 

section, the second in Sec. V.

The shock/rarefaction set up is identical to the shock/reshock set up with the above 

mentioned replacement. Therefore the evolution of all three systems is the same as before until 

the arrival of the second wave. As the transmitted shock approaches the end of the tube, the 

membrane bursts and thus a rarefaction, instead of a shock, moves “up” to meet the downward 

moving shocked interface or gas-curtain. Let us consider what happens in each system.

A. He/air

In Fig. 14 we show the normalized densities and interface acceleration as functions of 

time. The shock at t = 0 compresses the He and air densities by ~ 1.5. They stay constant until 

4.8 ms when the rarefaction meets the interface. The acceleration, being essentially a delta-
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function in time ( )(v tg δ∆= ), is zero until that time when it jumps to ~ 20 cm/ms2 and then 

decays as the He and air decompress.

Snapshots of the interface region at 4.2, 4.6, 5.0, and 5.4 ms are shown in Fig. 15. We 

bypass earlier snapshots as they are identical to the shock/reshock case and can be seen in Fig. 5 

of Ref. 20. The bubble amplitude as a function of time is presented in Fig. 16 comparing CALE 

(dashed line) and GLM (continuous). As discussed in Ref. 20, the postshock evolution is well 

represented by Eq. (3) with −+ ∆−== 000 )/v1( ηηη iW , where 8.15v ≈∆ cm/ms, ≈iW 121 cm/ms, 

and −0η = 0.7 cm. For 0η& we use Richtmyer’s prescription,4

afterAk v00 ∆= +ηη& (12)

with 77.0≈afterA . Lk is given by Eq. (7). The GLM calculation shown in Fig. 16 started after the 

passage of the initial shock and we used the above values of +0η and 0η& as initial conditions to 

Eqs. (8) and (9). As before,20 the Layzer model slightly overestimates the effect of the shock and, 

from Fig. 16, we see that it tends to underestimate the effect of the rarefaction. The deviations 

from CALE are about 10–15%.

Note that the evolution of )(tη after the rarefaction is effectively linear with time, 

meaning a constant bubble velocity bv . It is well-known that in the classical RT instability with 

constant acceleration and densities .~v constb In the case of a rarefaction, however, neither the 

acceleration nor the densities are constant – see Fig. 14. Decreasing accelerations and decreasing 

densities (decompression) have opposite influences on (t)η , the net effect being a cancellation of 

opposing trends, leaving us with a constant bv .

B. Air/He
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This is the same system as considered in Sec. II (see Figs. 2 and 3) with the solid endwall 

replaced by a membrane. Therefore, instead of a reflected shock hitting the interface at 2≈t ms, it 

is now a rarefaction that accelerates the system downwards. Since the acceleration is directed 

from the heavier fluid (air) towards the lighter one (He), we expect and indeed find a phase 

reversal shortly after 2 ms. The acceleration and densities are shown in Fig. 17.

Snapshots of the interface, as calculated by CALE with 0η =0.35 cm are shown in Fig. 18. 

Note that there are two phase reversals, the first associated with the incident shock (always 

moving down in this paper) and the second with the rarefaction (moving up). Needless to say, 

with shock/rarefaction there is either no reversal (e.g., He/air) or two reversals (e.g., air/He), 

while with shock/reshock there is always one and only one phase reversal.

The “bubble” amplitude as calculated by CALE is shown in Fig. 19. We put bubble in 

quotation marks because it becomes a “spike” after a phase reversal. The amplitude shown in 

Fig. 19 (as in previous such figures) is obtained by a tracer particle at x =6.5 cm on the interface. 

In the same figure we display the GLM result starting at t =0.2 ms with 0η =0 and 0η& given by 

Eq. (5a). As expected, it shows good agreement with CALE for the shock-induced bubble 

growth (where we could have used Eq. (3) as well) and the very early part of phase reversal. 

However, our solution fails to converge after t ~ 2.4 ms. This and other failures of the GLM are 

discussed in the Appendix.

C. Gas-Curtain

The replacement, by now familiar, of the endwall by a membrane takes us from the 

shock/reshock numerical experiment17 to shock/rarefaction.  (The effect of an isolated rarefaction 

was studied in the previous section—see Fig. 13).  Needless to say, the evolution of the curtain 
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until the second wave hits it is the same as before.  Therefore, we display in Fig. 20 only the 

evolution after the rarefaction, which occurs at about 600 µs. Comparing Fig. 20 with the case of 

a reshock (Fig. 16 in Ref. 17), we see that the rarefaction is much less disruptive to the curtain 

than a reshock.  We remind the reader that neither reshock nor rarefaction experiments on gas-

curtains have been performed to date.  

We conclude this section by noting that in all our examples we have relied on what may 

be called “natural timing” for the rarefaction: By allowing the interface to be shocked first, and 

allowing the transmitted shock to burst the membrane that initiates the rarefaction, the upward 

moving rarefaction meets the downward moving interface at a set time, determined largely (but 

not solely) by the initial membrane-to-interface distance: 122 cm or 15 cm in our examples.  It is 

possible, however, to burst the membrane by mechanical means anytime before the arrival of the 

transmitted shock; thus we shorten the time between the shock and the rarefaction or zero it out 

completely, i.e., the rarefaction and the shock can arrive simultaneously at the interface. If we 

further “delay” the shock, then the interface sees the rarefaction before the shock, a possibility 

studied in the next Section.

V. Rarefaction/Shock

Of the infinitely many configurations that can be obtained with an arbitrary time delay 

between the rarefaction and the shock, we will study only the air/He case for reasons that will 

soon become clear.

A.  Air/He

Figures 9 and 10 displayed the air/He interface and the “bubble” amplitude as a function 

of time after the rarefaction reached the interface - it essentially oscillates with time.  Having an 

arbitrary time delay at our disposal, we must decide at what time to send the shock.  We shall 
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take advantage of this freedom to check a prediction of Eq. (1) which, as far as we know, has 

never been tested before.

Considering Fig. 10, at least two time-delays suggest themselves.  The first is at ~0.56 

ms, when the oscillating η (with 0η =0.7 cm) goes through zero.  The second is at ~1.3 ms, when 

|η | has a maximum.  An interesting deduction from Eq. (1) is that if sη =0 then the shock has no 

effect, as we discussed in the Introduction. Thus we expect little or no change in )(tη for the 

“early” (0.56 ms) shock, and a relatively large change for the “late” (1.3 ms) shock, all compared 

with the no-shock case (Fig. 10).

For completeness, we show in Figs. 21a and 21b the interface acceleration and the gas 

densities for the early and late shocks separately, to be compared with Fig. 8 for the no-shock 

case.  Although the densities and average accelerations are similar to the no-shock case, we 

should point out that the early and late shocks induce a 14v ≈∆ and 13 cm/ms respectively, and 

it is of course this v∆ that appears in Eq. (1).  The post-shock oscillations seen in the interface 

accelerations in Figs. 21a and 21b are due to sound waves as the transmitted shock moves down 

the previously rarefied He and, moving down a density gradient, sends sound waves back to the 

interface.  Different zoning schemes and different choices for the artificial-Q in the code affected 

only the details of these sound waves, which we believe are physical.

The evolution of the amplitude in the no-shock case was shown in Fig. 10 and is repeated 

in Fig. 22 (curve 1) to which we add the early- and late-shock results (curves 2 and 3).  Our 

expectations are indeed confirmed by this figure: The early shock, seeing ηs ≈0 , has practically 

no effect on η , while the late shock at t ≈1.3 ms sees a large | sη | and almost immediately 

induces a phase reversal and growth to about twice the no-shock case (η ~ 6 cm vs. ~3 cm).  In 
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all cases, the amplitudes succumb to the subsequent stable acceleration forcing them to oscillate, 

reminiscent of gravity waves.

Returning to the pure rarefaction case, Fig. 10, one sees a second “null” point at 

t ≈2.02 ms when η goes through zero a second time.  And indeed, when we further delayed the 

shock (always Ms = 1.2 in air) to reach the interface at this time, the subsequent evolution was 

very close to the no-shock case, confirming again that shocks seeing ηs =0 have no effect on η

or η& .

We will not consider rarefaction/shock in the other two systems, He/air and gas-curtain, 

because perturbations evolve uniformly in these cases (see Figs. 6 and 13 respectively) and no 

particular shock timing is preferred.  Clearly, a shock arriving after the rarefaction has had time 

to amplify the perturbations will induce great vorticity and perhaps even turbulent mix.  For 

example, Fig. 13 showed the gas-curtain undergoing a rarefaction.  When we hit that curtain with 

a Mach 1.2 shock at t =300 µs, the subsequent evolution is much accelerated so that at t =475 µs 

(meaning 475 µs after rarefaction arrival but 175 µs after shock arrival) the curtain looks very 

much like the 600 µs curtain shown in Fig. 13, with densities about 50% higher than the pure 

rarefaction case shown in that figure.

VI. Conclusions

In this paper we have considered two opposite extremes at the end of a shock tube: a 

solid wall or a membrane.  They may be called a “fixed” and a “free” boundary, respectively,

and are “inverses” of each other in the sense discussed earlier31 (“fixed-free theorem”).  The 

solid endwall is standard practice, we believe, in all shock tubes.  Its inverse, a “free” boundary, 

is a new consideration that can probably be easily implemented, leading to a much richer variety
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of shocks and rarefactions occurring in different orders and timings.  We have described a few 

possibilities in the preceding Sections.

There is clearly a continuum between these two extremes: a fluid, call it “C”, so that 

depending on the properties of C the shock transmitted from A into B is reflected either as a 

shock or a rarefaction.  For example, C can act as a “shock absorber” and thus reflect a weaker 

shock than a fixed boundary would.  It can be shown that such weaker reshocks are necessary for 

certain kinds of freeze-out.  Needless to say, the possibilities for C are endless and one must 

design experiments tailored to observe specific phenomena.

On the theory side, a surprise finding (see Ref. 25 and the Appendix) is the failure of the 

Layzer model for both stable and unstable accelerations for moderate or large values of η0k . For 

stable accelerations, we know of no example where the model does better than its linear limit, 

Eq. (11). The model fails at moderate values of k0η like 1/3.  For unstable accelerations where 

the model has traditionally been applied it appears to be valid for larger values of η0k , but up to 

a certain limit given by Eq. (A24).  Beyond that limit the model fails again.

As discussed in the Introduction, complex acceleration histories are the hallmark of ICF 

implosions.  We have illustrated several possible experiments in shock tubes with fixed or free 

boundaries where the interface between two fluids A/B is subjected to shocks and accelerations 

and decelerations.  We believe experiments validating (or, perhaps more importantly, falsifying) 

code predictions concerning the evolution of interface perturbations will be invaluable when we 

apply the same codes to predict the presence or absence of mix in ICF nested shells, an issue of 

great impact on thermonuclear burn.2  Just as in this paper code calculations have highlighted the 

shortcomings of the Layzer model, it is quite possible that experiments will reveal the 

shortcomings of code calculations.
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APPENDIX: GENERALIZED LAYZER MODEL

A. Derivation

We consider two semi-infinite fluids of densities )(tAρ and )(tBρ in a gravitational field 

)(tg in the y-direction.  The interface is given by )(int xyy = .  We assume potential flow, 

),,(, tyxBAφ , within each fluid.  Within their respective regions the potentials satisfy Poisson’s 

equation,

02 =+∇
ρ
ρφ
&

, (A1)

where we have omitted the subscript labels A or B. At the interface they satisfy

∂t y+
∂φ
∂x

∂y
∂x

– ∂φ
∂y

= 0 (A2)

for )(int xyy = and Aφφ = or Bφ . Finally, the potentials satisfy Bernoulli’s equation,
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∂
∂φ

∂
∂φ

∂
∂φρ (A3)

again at )(int xyy = . Here )(tf is an arbitrary function of time, and we have assumed that there 

are no spatial density gradients ( 0=∇ρ
r

) except of course at the interface.  This approach can be 

traced back to Bell28 and is often adopted to accommodate time-dependent densities, taking 

ρA t( ), ρB t( ), and )(tg as “givens” of the problem.  The “unknowns” are Aφ , Bφ , and )(int xy .

There are other models29,30, besides Layzer’s, which may be generalized to time-

dependent densities and accelerations.  We selected Layzer’s model because of its simplicity and 

wide use. In Layzer’s approach the above equations are satisfied not for all x but only in the 

vicinity of the bubble, 0≈x :

( ) ( ) 2
2int xtty ηη += (A4)
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where  )(tη is the bubble amplitude (initial value = 0)0( ηη ≡ ) and )(2 tη is related to the bubble 

curvature.  Higher-order terms are neglected.  Following Ref. 11, 2D and 3D flows are 

distinguished by a single parameter c ( ˜ c g in Ref. 11).  For 2D or “curtain” configuration the 

initial interface is given by 

( ) ( ) ...)
4

1(cos0
2

0
2

000int +−===
xkckxty ηη (A5a)

and for 3D or “tubular” flow

( ) ...)
4

1(0
2

0
2

0
0

00int +−=




==

xkcR
rJty n ηβη (A5b)

where 0J is the Bessel function of order zero, βn are the zeros of the Bessel function of order one 

( K,173.10,016.7,832.3 321 ≈≈≈ βββ ), and R is the tube radius.  We have let rx= and Rk n /β=

for 3D.  By expanding the cosine and Bessel functions we see that c = 2 for 2D and c = 1 for 3D. 

With the proper identification of the wavenumber k ( λπ /2 for 2D, Rn /β for 3D) the value of 

c (2 for 2D, 1 for 3D) differentiates 2D from 3D flow.

The last step is to write down the potential in each fluid, valid to second order in x .  This 

was done in Ref. 11 for a single (we’ll call it B) fluid, and the extension to two fluids is 

straightforward:

2)(
22
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ρ
ρφ η &

−+−= − , (A7)

with )(ta and )(2,1 tb functions of time yet to be determined.  This is the simplest extension of the 

original Layzer model (one fluid with constant density) to two fluids with time-dependent 
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densities and we refer to it as the “Generalized Layzer Model.”  By construction the potentials

satisfy Poisson’s equation, Eq. (A1), and have enough functions to satisfy Eqs. (A2) and (A3), 

always to second-order in x and near )(~ int xyy .  The final results are given in Eqs. (8) and (9) 

as two ordinary, albeit nonlinear, coupled differential equations for )(tη and )(2 tη .

We briefly outline the derivation.  Substituting Eq. (A6) in Eq. (A2) we find

)(1)( ηρ
ρ B

B dt
dta −= (A8)

from the zero-order terms.  From the second-order terms we obtain Eq. (8).  Note that this 

equation is identical to Eq. (5) of Goncharov and Li11 as we have not (yet) used Eq. (A7) for the 

second fluid (all our results reduce to theirs for a single fluid).

Substituting Eq. (A7) in Eq. (A2) we find 

)(1)()( 21 ηρ
ρ A

A dt
dtbtb =+ (A9)

from the zero-order terms, and Eq. (10) from the second-order terms.

A much longer calculation is needed to obtain the last remaining equation, Eq. (9), from 

Bernoulli’s equation, Eq. (A3), after substituting Eqs. (A6) and (A7) in it.  The zero-order terms 

give )(tf , which we do not write down, and the second-order terms give Eq. (9), completing the 

derivation of the two equations, Eqs. (8) and (9), needed to solve for  )(tη and )(2 tη .  Eq. (8) 

being a first-order ODE and Eq. (9) a second-order ODE we reduce them to a system of three 

first-order equations in a standard way (define η& to be a new variable) and solve them 

numerically.  Although three initial conditions, 0η , 0η& , ( )02η are needed, the last one is given 

by Eq. (A5)

4/)0( 0
2

2 ηη ck−= , (A10)
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so that only 0η and 0η& are needed as initial conditions.  We usually set  00=η& (perturbations 

starting from rest), leaving only 0η .

We complete the derivation by comparing with previous results. As mentioned above, 

Eqs. (8) and (9) reduce to the results of Ref. 11 for a single fluid ( 0=Aρ ).  For two fluids of 

constant densities (see below) they reduce to the results of Ref. 10.  For a single, constant density 

fluid with arbitrary η0 we recover the 2D and 3D results of Ref. 8, confirmed by Ref. 9 for 2D. 

Finally, we recover Layzer’s 2D and 3D results by setting η0 = 0.

B. Linear Limit

We have not found any exact analytical solutions to the GLM equations.  Only by going

to the constant-density limit do we find analytic solutions reported previously.8,20 To find 

analytic solutions for time-dependent densities we must resort to another limit, the linear limit, 

given by Eq. (11).  We believe these solutions have not been previously reported and, although 

limited to the linear regime, 1<<kη , we found them highly useful as test problems to verify the 

numerical solutions to the fully nonlinear GLM equations.

Example 1. Densities that decrease or increase with time affect the evolution of the 

amplitude as displayed in Eq. (11): )(tη responds to both accelerating forces and to 

expansions/compressions. In general, accelerations increase )(tη while compressions decrease

it. It should therefore be possible to play these two forces against each other so that they cancel

completely leading to a new kind of freeze-out, meaning 0)( =tη& . From Eq. (11), a constant 

)(tη is obtained if and only if

)}(ln)(ln{
)()(
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2

2

2
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ρρ
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which we refer to as the freeze-out condition. One may use it to define outfreezeg − if the densities 

are “given”. If )(tg is “given” then Eq. (A11) is a condition on BA,ρ to achieve freeze-out. For 

example, take a single fluid ( 1=A ) and a constant g . The classical, meaning constant-density 

result is )cosh()( 0 tgkt ηη = . On the other hand, if we allow the density to vary with time as 

2/
0

2

)( gktet ρρ = , then 0)( ηη =t is the solution to Eq. (11): Acceleration and compression have 

cancelled each other out completely. In Fig. 23 we display the evolution of 0/ηη , often called 

the growth factor, as a function of tgk , often called the e-folding time. The nonlinear results, 

based on Eqs. (8) and (9), are also included. Of course freeze-out requires extreme compression: 

By 5 e-folding time the density must increase by .107.2~ 55.12 ×e Large compressions are found 

only in ICF implosions2 where the central DT, initially in vapor form, compresses by factors 105-

106.

Unfortunately, this freeze-out condition (Eq. (A11)) depends on k and is therefore less 

interesting than the k -independent freeze-out reported in Ref. 15.

Example 2. Assuming that .constg = and that the densities vary exponentially with 

time, i.e., 

t
BABA et αρρ )0()( ,, = , (A12)

Eq. (11) reduces to

0=−+ ηηαη gkA&&& (A13)

with A =Atwood number = ρB –ρA
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where

4/
2

2ααγ +±−=± gkA . (A15)

Clearly, we get the classical result gkA± for constant densities, i.e., α =0. For  04/2 <+αgkA

we can define  ωαγ i±−=± 2
and Eq. (A14) can be written as

})sin()2/()cos({)( 000
2/

ω
ωηαηωηη α ttet t &++= − (A16)

where 4/2αω += gkA .  We have damped oscillations for compressions ( 0>α ), but growing 

oscillations for expansions ( 0<α ), a type of behavior seen in the air/He rarefaction experiment 

(Figs. 8 through 12).  For 04/2 >+αgkA we replace the sine and cosine functions in Eq. (A16) 

by their corresponding hyperbolic functions, leading to exponential growth in all cases except 

when gkA < 0 and 0>α (compression) where η decays exponentially with time.

Example 3. Consider the case 0=g .  All that is required to solve Eq. (11) analytically 

is that )(tAρ and )(tBρ have the same functional form, hence ρB t( ) ρA t( )= ρB 0( ) ρA 0( ), which 

includes the single-fluid case (vanishing Aρ or Bρ ).  Under this assumption Eq. (11) can be 

written as ( )ρη
ρ dt

d1 = constant and its solution is
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where )()( tt Aρρ = or )(tBρ , and )0(0 Aρρ = or )0(Bρ . If tet αρ ~)( then )1()( 0
0

tet α

α
ηηη −−+=
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C. Constant densities. 
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The rest of this Appendix is limited to time-independent density profiles. The first GLM 

equation, Eq. (8), can be solved analytically:
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where we have already used Eq. (A10) for )0(2η .  The second equation, Eq. (9) reduces to
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We now elaborate on our comparison with previous work: The above equation reduces to 

Goncharov’s10 Eqs. (8) and (18) for c=2 (2D) and c=1 (3D) respectively.  For A=1 it reduces to 

Eqs. (2a) and (2b), respectively, of Ref. 8 after defining ke )( 0ηηθ −≡ and, if .constg = , can be 

integrated once (see Eqs. (3a,b) in Ref. 8). If we further let 00 =η we recover Layzer’s results 

(his Eqs. (32) and (55)) by setting c =1 and c =2 respectively.

In the course of this investigation we discovered limitations and failures which occur 

even for constant densities (Eq. (A19)), and have reported them in a brief communication.25 the 

first occurs for large 0η : Eq. (A19) gives an unphysical solution if the coefficient of its η&& term 

vanishes. Write

)22)(22()/11(82
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where
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Note that 2η is always negative, varying between 4/)0( 0
2

2 ηη ck−= and )1(4/)(2 cck +−=∞η , 

while 02 >+η and 02 <−η . Therefore +− 22 ηη is also negative and cannot vanish. However, 

−− 22 ηη can vanish, unless −
2η is outside the range of )(2 tη , which requires
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which can be written as
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as reported in Ref. 25. For 1=A this upper limit is 1)( max0 =kη independent of c . Indeed, by 

examining the only known analytic solutions for arbitrary k0η (the case 1=A and 0=g , Eqs. 

(10) through 15 of Ref. 8) we see that 10 <kη is a necessary requirement for 1=A . Larger 

values are allowed for 1<A : See Fig. 1 of Ref. 25.  For example, for 8/1=A and 2=c , 

2)( max0 =kη .

Eqs. (A18) and (A19) undergo a tremendous simplification for )1/(1*0 ckk +≡=ηη : Eq. 

(A18) gives )1(4/)0(.)( 22 cckconstt +−=== ηη and Eq. (A19) can be written succinctly as a 

linear equation:

0=− LLLL Agk θθ&& (A25)

where
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)1(2/)1)(1( AcAckAcckL −++++≡ , (A26a)

)1/(2 AcAcAAL −++≡ , (A26b)
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Of course 1)0( =Lθ and LL k0)0( ηθ && = . Note the similarity of Eq. (A25) to Rayleigh’s linear 

equation 0=− ηη gkA&& . For .constg = the solution to Eq. (A25) is 
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Eq. (A27) is equivalent to
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where
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is the asymptotic RT bubble velocity.

If 0=g as is the case after a shock and therefore labeled the RM case, we take the 

0→g limit of Eq. (A29):
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which is Eq. (3). Now the bubble velocity is a decreasing function of time,
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with the asymptotic value

tkL/1=∞η& (A33)

as in Eq. (4).

One can find other analytic solutions to Eq. (A25) by using other time-dependent 

accelerations )(tg as was done in Ref. 25, always with the proviso that the solutions Lθ be 

positive definite. We know of no other nonlinear model that can provide explicit solutions for the 

nonlinear amplitude for nontrivial )(tg .

An additional advantage of Eq. (A25) is the following: As we have already pointed out, 

Eqs. (A25) through (A33) give satisfactory results for other values of 0η also.8 So far the 

emphasis has been on the simplicity of Eq. (A25) vis-à-vis Eq. (A19) and the explicit solutions 

for RT and RM instabilities, Eqs. (A29) and (A31) respectively. Eq. (A25), however, becomes 

incomparably better than Eq. (A19) when the latter fails, and it can do so rather dramatically. As 

discussed above and in Ref. 25, Eq. (A19) fails for max00 )(ηη ≥ . Using Eq. (A25), on the other 

hand, one obtains results which, although not quite correct, are not patently wrong as Eq. (A19)

can be. For example, in Ref. 25 we discussed a gedanken LEM experiment in which a single 

fluid ( 1=A ) with surface perturbations of 3/3.7=λ cm is accelerated, hence

4.06/3.7/1)( max0 ≈== πη k cm. The acceleration increases from 0 to 070g

( 3
0 1098.0 −×=g cm/ms2) in 7 ms, after which it is kept constant at that value. Three different 

initial amplitudes were considered: 0.13, 0.3, and 0.5 cm. For the first 0η Eqs. (A19) and (A25) 

give identical )(tη because 3/10 =kη , i.e., *0 ηη = , and the result agrees well with CALE 

simulations (See Fig. 4 in Ref. 25). For the second 0η Eqs. (A19) and (A25) give comparable 

results that agree, within 10-15%, with CALE. For the third 0η (0.5 cm) however, Eq. (A19) 
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fails miserably because now max00 )(ηη > . In Fig. 24 we display these results comparing CALE, 

Eq. (A19), and Eq. (A25). Eq. (A19) is patently wrong for this 0η , while Eq. (A25), admittedly

not in perfect agreement with CALE, gives a perhaps acceptable result. At this time we have no

better proposition than using Eq. (A25) for instabilities with max00 )(ηη > .

In Figs. 10 and 12 we pointed out that the GLM fails for negative gA , particularly for 

large k0η (but of course always within the allowed region, i.e., max00 )( kk ηη < ). For very small 

kη the GLM reduces to the linear theory, Eq. (11), valid for both positive and negative gA . For 

negative gA the GLM begins to fail as kη increases. The reason can be found in Eq. (A25): For 

0<gA the solution to Eq. (A25) oscillates in time ( tLL ωθ sin~ or tLωcos ) just like the linear 

gravity waves ( tωη sin~ or tωcos is the solution to 0=− ηη gkA&& for 0<gA ). However, from 

its definition (Eq. (A26c), Lθ is a positive definite variable and cannot change sign. In other 

words for 0<gA the cosh and sinh terms in Eq. (A29) go over to cos and sin and one is soon 

taking the logarithm of a negative number resulting in imaginary η !

The third type of failure reported in Ref. 25 deals with models for spikes as advocated in 

Refs. 9 and 10. In this paper we do not consider spikes because there is no satisfactory spike 

model for arbitrary A even for the standard, constant-density Layzer model.25
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Figure Captions:

Fig. 1. A shock or rarefaction tube.  With a solid endwall the perturbed A/B interface will 

undergo shock/reshock.  With a membrane burst into vacuum the interface will see a rarefaction.  

The first shock may be launched before or after bursting the membrane, hence the interface will 

see a shock first followed by a rarefaction or vice-versa. We consider perturbed interfaces 

between He/air, air/He, and air/SF6/air gas curtains.

Fig. 2. Snapshots of the air/He interface with perturbations of =λ 13 cm and =0η 0.7 cm.  A 

Mach 1.2 shock moving down in air strikes the interface at =t 0, reflects off the endwall 122 cm 

away and, moving up, reshocks the interface at =t 2.0 ms, hence the last snapshot is 0.5 ms after 

reshock.  The time-evolution of the bubble amplitude (at =x 6.5 or 19.5 cm) is shown in Fig. 3. 

Fig. 3. Bubble amplitude as a function of time for the air/He problem shown in Fig. 2.  The 

Mach 1.2 shock strikes the interface at =t 0 when the amplitude is =0η -0.35 cm or -0.7 cm (the 

negative sign is for plotting convenience). The dashed curves are from CALE simulations and 

include reshock at =t 2 ms. The continuous curves are from Eq. (3) — see text.

Fig. 4. The normalized densities and the interface acceleration as functions of time in ms for the 

He/air case undergoing a rarefaction.  The densities are normalized by their initial values, 

166.0)0( =Heρ mg/cm3 and 2.1)0( =airρ mg/cm3. The interface acceleration, in cm/ms2, is 

normalized by 10 for plotting convenience.

Fig. 5. Snapshots of the He/air interface under a rarefaction. The interface starts with 

perturbations of =λ 13 cm and =0η 0.7 cm.  Snapshots at =t 0, 1.8, 2.6, and 3.8 ms. Compare 

with the shock case, Fig. 5 in Ref. 20.
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Fig. 6. Bubble amplitude )(tη as a function of time in ms for the He/air case undergoing a 

rarefaction, as calculated by CALE (dashed line) and GLM (continuous line), starting with 

=0η 0.7 cm.  See Fig. 5 for snapshots of the interface. The GLM uses the acceleration and 

densities displayed in Fig. 4 as input to Eqs. (8) and (9).

Fig. 7. Same as Fig. 6 for =0η 0.05 cm.  We have added the linear result, Eq. (11).  For small 

amplitudes CALE (dashed line), GLM (continuous), and linear (continuous) results agree, but for 

>η 1 cm the linear result overestimates the growth.

Fig. 8. Same as Fig. 4 for the air/He case.

Fig. 9. Snapshots of the air/He interface under a rarefaction. The interface starts with 

perturbations of =λ 13 cm and =0η 0.7 cm.  Snapshots at =t 0, 0.9, 1.3, 2, 2.9, and 3.3ms.  

Compare with the He/air case, Fig. 5

Fig. 10. )(tη vs. t for the air/He case starting with =0η 0.7 cm.  The dashed curve is the CALE 

result (snapshots in Fig. 9) and the continuous curve is the GLM result we believe to be 

completely erroneous.  Compare with the He/air case, Fig. 6.

Fig. 11. Same as Fig. 10 with =0η 0.05 cm.  The CALE result agrees with both the linear and 

nonlinear GLM.  Compare with the He/air case, Fig. 7.

Fig. 12. Same as Fig. 10 with =0η 0.35 cm.  The linear result is much closer to CALE than the 

nonlinear GLM.

Fig. 13. Snapshots of the air/SF6/air gas-curtain system under a rarefaction.  Twenty isodensity 

contours are displayed logarithmically spaced from 0.5 mg/cm3 to 5 mg/cm3.  Compare with Fig. 

10 of Ref. 17 for the shock case.
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Fig. 14. The normalized densities and acceleration as functions of time in ms for the He/air case 

undergoing a shock at =t 0 followed by a rarefaction at 4.8 ms.  The Ms = 1.2 shock increases 

the He and air densities ~1.5 times.  They remain constant until the rarefaction reaches them.

Fig. 15. Isodensity contours for the He/air case undergoing shock/rarefaction, with the shock 

arriving at =t 0 and the rarefaction at =t 4.8 ms. The early evolution from =t 0 to 4.2 ms is 

identical to the shock/reshock case20,21 and is not shown here. =0η 0.7 cm,  =λ 13 cm.

Fig. 16. Bubble amplitude as a function of time for the He/air case undergoing shock/rarefaction.  

The dashed curve is the result of the CALE simulation (snapshots in Fig. 15), the continuous 

curve is from the GLM.  The GLM overestimates the effect of the shock, but underestimates the 

rarefaction.

Fig. 17. Same as Fig. 14 for the air/He case.  The Ms = 1.2 shock increases the densities

~1.2 times.  They remain constant until the rarefaction reaches the interface at ~2 ms.

Fig. 18. Snapshots of the air/He interface undergoing a shock/rarefaction (see Fig. 17 for 

acceleration and densities). The initial amplitude is 0.35 cm. Compare with Fig. 2 for the 

shock/reshock case.

Fig. 19. “Bubble” amplitude for the air/He shock/rarefaction case. The interface with  

=0η 0.35 cm is shocked (Ms = 1.2) at =t 0. The transmitted shock exits into vacuum and sends

back (i.e., up) a rarefaction wave that reaches the interface at ~t 2 ms and reaccelerates the 

interface downward (see Fig. 17).  Snapshots were given in Fig. 18. The dashed line is the CALE 

result, and the continuous line is the GLM result, which stops shortly after 2.4 ms.

Fig. 20. Snapshots of the air/SF6/air gas-curtain undergoing a shock at =t 0 followed by a 

rarefaction. The curtain was initially 15 cm away from the endmembrane separating air from 

vacuum.  The membrane bursts at ~t 350 µs by the transmitted shock, and a rarefaction wave 
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moves up to meet the curtain at ~t 600 µs.  The effect of the shock before the rarefaction was 

measured experimentally (sinuous pattern, Ref. 18) and simulated with CALE (Ref. 17). Same 

isodensity contours as in Fig. 13.

Fig. 21. Air/He interface acceleration and gas densities as functions of time when a rarefaction is 

followed by (a): an early shock at 0.53 ms or (b): a late shock at 1.3 ms.  Compare with the no-

shock case, Fig. 8.

Fig. 22. )(tη vs. t for three air/He rarefaction/shock cases discussed in the text: 1) no shock -

this curve is the same as in Fig. 10; 2) Rarefaction at =t 0 followed by a shock at 0.56 ms 

(early); 3) Rarefaction at =t 0 followed by a shock at 1.3 ms (late). All CALE calculations.  

Arrows indicate shock arrival times for curves 2 and 3. In curve 2 the early (0.56 ms) shock sees 

0=sη and therefore has no effect on the evolution of )(tη (its later evolution differs from curve 

1 because the acceleration histories are different).

Fig. 23. Linear and nonlinear growth factors 0/ηη as functions of e-folding time tgk in a 

single fluid ( =Aρ 0) taking .constg = and 1.00 =kη . In the two upper curves the density is held 

constant; In the two lower curves 2/2

)0( gkteρρ = , leading to freeze-out in the linear theory given 

by Eq. (11). The nonlinear results are calculated from Eqs. (8) and (9).

Fig. 24. Bubble amplitude )(tη in cm as a function of time in ms as calculated by CALE, Eq. 

(A19), and Eq. (A25). The system is a single-fluid LEM tank with perturbations of λ =7.3/3 cm 

and initial amplitude =0η 0.5 cm (see text for acceleration history). Eq. (A19) fails because 

max00 )( kk ηη > given by Eq (A24). For smaller values of 0η both equations show fair agreement 

with CALE (see Ref. 25). 
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